Skip to content

Connectivity Structure

Table 2. lSBC sSBC GBS D-SC
Number of cells 36600 15 6300 15 630 15 16
Converging ANFs, n soma
2-3 1 2 14 15
soma
2-3 1 2 14 15
soma/prox. dend15
4-4015
av~23 3 21
soma/prox. dend15
106
Inhibitory Inputs, n 10 1 10 1 91 3
Excitatory Endings Morphology Endbulb of
Held1 1 15
Endbulb of
Held1 1 15
Modified
Endbulb 12 15
Bouton
Endings 15
Input (ANF) CF L 10 11 H 10 or
H/full range 11
H-L wide range 6 11
Input (ANF) SR, spikes/s L/M/H equally7 L/M/H equally7 mainly H 3 4 5 7
Ex:183
Exc. Synapse Conductance, nS 222 6 222 6 222 6 4.56
Exc. Synapse decay Time Constant, ms 0.36-0.52 0.36-0.52 0.36-0.52
Exc. Synapse Reversal Potential, mV 02 02 02
Inh. Synapse conductance, nS 7.56 7.56 7.56
Inhib Synapse Time Constant, ms (α function) 116 116 116
“Cell” Type II II3 I-II6 or II-I6
Cell CF skewed to L13 the same range
as ANFs 24
skewed to H13 broadly tuned15 16
Cell SR, spikes/s distribution ~ to that of ANF7 383 or L31 ??
Response Type PL8 9 11 15 PL8 9 11 15 PL-N2 3 8 15 Onc 8 9 11
Targets iLSO only2 11 cMNTB8 11 14 BC
Deviation of first spike occurrence 100 μsec15
Inhibitory inputs delay from AN, ms 2 2 2
Driven Rate,spikes/s 1003

MNTB and LSO connectivity

Table 3 MNTB - PC LSO - PC
Number of cells 2000-6000 21 75% of the population 20
Excitatory Inputs, n soma 119 distal dendrites 17 20 1022
Inhibitory Inputs, n soma/prox. dend17 18 20 822
Excitatory Endings Morphology Calyx of Held14 17 20
Exc. Synapse Conductance, nS 30–16014
Exc. Synapse decay Time Constant, ms
Exc. Synapse Reversal Potential, mV
Inh. Synapse conductance, nS
Inhib Synapse Time Constant, ms <221
Av. decay (1-exp) 0.7521
Excitation time delay from AN, ms 1.220 2.920
Inhibition time delay from AN, ms 3.120
Cell CF preponderance of H21 skewed to H23 27
Response Type PL/PL-N20,2120 21 S/F-CHOP7 20 25 - 30
Cell SR, spikes/s from <1 to >10021, av~3021 No or Low 21

REFERENCES:

  1. = 6 (Table 5.)
  2. Cao XJ, Oertel D. 2010. Auditory nerve fibers excite targets through synapses that vary in convergence, strength, and short-term plasticity. J Neurophysiol 104:2308-2320.

  3. Spirou G. A.; Rager, J.; Manis, P. B., 2005: Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience 136(3): 843-863.

  4. Liberman M.C. 1991. Central projections of auditory-nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus. J Comp Neurol. 313(2):240-58.

  5. Liberman M.C. 1993. Central projections of auditory nerve fibers of differing spontaneous rate. II. Posteroventral and dorsal cochlear nuclei. J. Comp. Neurol. 327, 17-36.

  6. Xie R, Manis PB. 2013. Target-specific IPSC kinetics promote temporal processing in auditory parallel pathways. J Neurosci. 33(4):1598-614.

  7. Trussell LO, Popper AN, Fay RR, editors. 2012. Synaptic Mechanisms in the Auditory System. Springer Handbook of Auditory Research, Vol. 41, pp 165-185.

  8. Rees A, Palmer AR, editors. 2010. The Oxford handbook of auditory science: the Auditory brain. New York: Oxford UP.

  9. May BJ., and Limb C. 2010 Neurophysiology: The Central Auditory System. In: A.J. Gulya, L.B. Minor, D.S. Poe. McGraw-Hill , editors. Glasscock-Shambaugh Surgery of the Ear, 6/e. Eds:, England.

  10. Cao X-J, Shatadal S, Oertel D. 2007. Voltage-sensitive conductances of bushy cells of the mammalian ventral cochlear nucleus. J Neurophysiol. 97: 3961-3975.

  11. Cant NB, Benson CG. 2003. Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bull 60:457-474.

  12. Ryugo DK. and Parks TN. 2003. Primary innervation of the avian and mammalian cochlear nucleus. Brain Res. Bull. 60, 435-456.

  13. Oertel D. 1999. The role of timing in the brain stem auditory nuclei of vertebrates. Annu. Rev. Physiol. 61, 497-519.

  14. Oertel D. 1997. Encoding of timing in the brain stem auditory nuclei of vertebrates. Neuron 19, 959-962.

  15. Young E.D. and Oertel D. 2003. The cochlear nucleus. In: G.M. Shepherd (Ed). Synaptic Organization of the Brain, Fifth Ed., Oxford Press, pp. 125-164

  16. Young ED., and Oertel D. 2010. Cochlear Nucleus. In G.M. Shepherd, and S. Grillner, editors. Handbook of Brain Microcircuits. New York: Oxford. pp. 215-223.

  17. Yin T., Kuwada S. 2010. Binaural localization cues. In: Palmer A. R., Rees A., editors. The Auditory Brain. Oxford, UK: Oxford University Press. Vol. 2, 271-302.

  18. Grothe B; Pecka M; McAlpine D. 2010. Mechanisms of Sound Localization in Mammals. PHYSIOL REV , 90(3):983 - 1012.

  19. Graham BP, Wong AYC, Forsythe ID. 2001. A computational model of synaptic transmission at the calyx of Held Neurocomputing 38:37-42.

  20. Yin T. 2002. Neural mechanisms of encoding binaural localization cues in the auditory brainstem. In: Oertel D, Popper AN, Fay RR, editors. Integrative functions in the mammalizan auditory pathway. New York: Springer-Verlag. p 99-159.

  21. Trussell LO. 2012. Inhibitory Neurons in the Auditory Brainstem. In: Trussell LO, Popper AN, Fay RR, editors. Synaptic Mechanisms in the Auditory System. Springer Handbook of Auditory Research, Vol. 41, pp 165-185.

  22. Sanes DH. 1990. An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive. J Neuroscience 10(11): 3494-506.

  23. Tollin, D.J. 2003. The Lateral Superior Olive: a Functional Role in Sound Source Localization. Neuroscientist, vol. 9(2): 127-143

  24. Rouiller EM, Cronin-Schreiber R, Fekete DM, Ryugo DK.1986. The central projections of intracellularly labeled auditory nerve fibers in cats: an analysis of terminal morphology. J Comp Neurol 249: 261-278.

  25. Jennings, T. R. and Colburn, H. S. (2010). Models of the Superior Olivary Complex, Computational Models of the Auditory System (eds., R.\ Meddis and E.\ Lopez-Poveda), Springer: New York.

  26. Wu SH, Kelly JB. 1991. Physiological properties of neurons in the mouse superior olive: membrane characteristics and postsynaptic responses studied in vitro. J Neurophysiol 65:230 -246

  27. LH. Carney “Neural Basis of Audition” In J. Wixted & H. Pashler (eds.), Stevens’ Handbook of Experimental Psychology. Wiley (2002)

  28. NT. Greene , KA. Davis. (2012) Discharge patterns in the lateral superior olive of decerebrate cats. J Neurophysiol 108:1942-1953

  29. D J. Tollin and TC T. Yin. (2002) The Coding of Spatial Location by Single Units in the Lateral Superior Olive of the Cat. I. Spatial Receptive Fields in Azimuth. J Neurosci. 22(4): 1454-1467

  30. Tsuchitani C (1982) Discharge patterns of cat lateral superior olivary units to ipsilateral tone-burst stimuli. J Neurophysiol 47:479-500.

  31. Joris, P. X., Carney, L. H., Smith, P. H., & Yin, T. C. T. (1994). Enhancement of neural synchronization in the anteroventral cochlear nucleus I. Responses to tones at the characteristic frequency. Journal of neurophysiology, 71, 1022-1022.

ACKNOWLEDGMENTS

This work was funded by A.B. Kogan Research Institute for Neurocybernetics, Southern Federal University, Rostov-on-Don, Russia